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ABSTRACT Lethal mutagenesis is an antiviral approach that consists of extinguishing a
virus by an excess of mutations acquired during replication in the presence of a muta-
genic agent, often a nucleotide analogue. One of its advantages is its broad-spectrum
nature, which renders the strategy potentially effective against emergent RNA viral infec-
tions. Here we describe the synergistic lethal mutagenesis of hepatitis C virus (HCV)
by a combination of favipiravir (T-705) and ribavirin. Synergy has been documented
over a broad range of analogue concentrations using the Chou-Talalay method im-
plemented in CompuSyn graphics software, with the average dose reduction index
(DRI) being above 1 (68.02 � 101.6 for favipiravir and 5.83 � 6.07 for ribavirin) and
the average combination indices (CI) being below 1 (0.52 � 0.28). Furthermore, ana-
logue concentrations that individually did not extinguish high-fitness HCV in 10 se-
rial infections extinguished high-fitness HCV in 1 to 2 passages when used in combi-
nation. Although both analogues displayed a preference for G ¡ A and C ¡ U
transitions, deep sequencing analysis of mutant spectra indicated a different prefer-
ence of the two analogues for the mutation sites, thus unveiling a new possible syn-
ergy mechanism in lethal mutagenesis. The prospects for synergy among mutagenic
nucleotides as a strategy to confront emerging viral infections are discussed.
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Lethal mutagenesis is an antiviral approach consisting of the achievement of viral
extinction by an excess of mutations, an outcome supported by theoretical and

experimental studies (1–10). Cell culture and in vivo infection experiments have docu-
mented the extinction of RNA viruses by base and nucleoside analogues (converted
intracellularly into their active nucleotides), notably, favipiravir (T-705; 6-fluoro-3-hydroxy-
2-pyrazinecarboxamide), favipiravir derivatives, and ribavirin (1-�-D-ribofuranosyl-1-H-1,2,4-
triazole-3-carboxamide). Both purine analogues have been licensed for the treatment of
some human viral infections, and they can act as lethal mutagens for some RNA viruses
(reviewed in reference 10).

We are interested in exploring broad-spectrum antiviral treatments based on lethal
mutagenesis using hepatitis C virus (HCV) replication in human hepatoma cells as a
model system. HCV infections have an important public health impact, and the virus is
a representative of the Flaviviridae family of human pathogens. Despite 95% sustained
viral response rates with direct-acting antiviral agents (DAAs) against HCV, there is a
trend toward the increased circulation of DAA-resistant, natural occurring HCV variants
(11–13). Such a circulation is unfolding in parallel with continuing genotype and
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subtype HCV diversification (14). In addition, recent evidence suggests epigenetic-
mediated hepatic pathological sequels once the virus is eliminated by DAAs, including
hepatocellular carcinoma recurrence (15–19). If treatment escape mutants become
epidemiologically dominant and the observations of pathological sequels following
DAA-mediated virus clearance are corroborated, new treatments for HCV will be
needed.

Ribavirin, used in combination with pegylated interferon alpha (IFN-�), was the
standard anti-HCV therapy a decade ago, and ribavirin is still included in some DAA
formulations (20). There is genetic and clinical evidence that lethal mutagenesis may be
part of the anti-HCV mechanism of ribavirin (21–24). Regarding favipiravir and deriva-
tives, Furuta and colleagues documented potent inhibitory activity against RNA viruses,
notably, influenza virus (25–29). Picornaviruses, alphaviruses, flaviviruses, rhabdovi-
ruses, orthomyxoviruses, paramyxoviruses, arenaviruses, hantaviruses, and bunyavi-
ruses are inhibited by members of this pyrazinecarboxamide family of molecules (27,
30–48), thus rendering these as drug candidates to confront emerging viral infections
(49, 50).

The participation of lethal mutagenesis in the antiviral activity of favipiravir and
derivatives has been suggested for some virus-host systems by the increase of the
mutant spectrum complexity when the virus was on its way toward extinction (51–60).
A few studies have examined synergistic effects between nucleotide analogues or
between an analogue and a standard, nonmutagenic inhibitor. Smee and colleagues
demonstrated synergism between favipiravir and oseltamivir against influenza virus
infections in mice (43), thus expanding the value of favipiravir as an antiviral agent (50).
Favipiravir and ribavirin exerted a synergistic activity against Rift Valley fever virus and
viral hemorrhagic fever viruses in animal models (46, 61, 62). Synergism between
favipiravir and ribavirin may result from their independent mechanisms of activity (10,
63–66), and a role of lethal mutagenesis in the reinforcement of their effectiveness has
not been established.

Our previous work documented the participation of lethal mutagenesis in the
antiviral activity of favipiravir (53) and ribavirin (24) when present individually during
HCV replication in human hepatoma cells. Here we show that favipiravir and ribavirin
exert a synergistic activity against HCV in human hepatoma cells, including the extinc-
tion of high-fitness virus which is resistant to the analogues administered individually.
Interestingly, despite the two analogues evoking a similar bias in favor of G ¡ A and
C ¡ U transitions during lethal mutagenesis of HCV (24, 53), deep sequencing showed
that the preferred mutation sites of the two analogues are not identical, therefore
revealing a new potential synergism mechanism among mutagenic nucleotides.

RESULTS
Synergism of favipiravir and ribavirin against hepatitis C virus. The inhibition of

HCV infectious progeny production in single infections of Huh-7.5 cells was measured
using a concentration range of 0 to 400 �M favipiravir (the maximum concentration is
0.46-fold the 50% cytotoxic concentration [CC50] value and 54.0-fold the 50% inhibitory
concentration [IC50] value [53]) and 0 to 50 �M ribavirin (the maximum concentration
is 0.46-fold the CC50 value and 5.9-fold the IC50 value [24]). The virus tested was the
parental, low-fitness population of HCV at passage 0 (HCV p0) (67), derived from
transcription of plasmid Jc1FLAG2(p7-nsGluc2A) (genotype 2a) (68). The analogues
were present either individually or in combination during infection, and infectious
progeny production was analyzed using CompuSyn software (69–71). The results (Fig.
1) indicated synergism, according to the normalized isobologram (Fig. 1B); a favorable
dose reduction, based on an average dose reduction index (DRI) above 1 (68.02 � 101.6
for favipiravir and 5.83 � 6.07 for ribavirin, which are the average DRIs of 16 different
concentration combinations of the two drugs; Fig. 1C and Table 1); and an average
combination index (CI) below 1 (0.52 � 0.28, which is the average CI of 16 different
drug concentration combinations; Fig. 1D and Table 1). The values of all parameters are
diagnostic of synergism between favipiravir and ribavirin acting on HCV p0.
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FIG 1 Synergistic activity of favipiravir and ribavirin against hepatitis C virus. (A) Infectious progeny production of
HCV p0 upon infection of Huh-7.5 reporter cells. Values and standard deviations (from triplicate determinations) are
given. (B) Dose-normalized isobologram for the nonconstant ratio combinations. The combination data points that
fall on the hypotenuse indicate an additive effect, those that fall on the lower left indicate synergism, and those
that fall on the upper right indicate antagonism. The program excluded the representation of the point corre-
sponding to 50 �M favipiravir and 5 �M ribavirin. D, dose; Dx, dose of a single drug that exhibits a given percent
inhibition. (C) Dose reduction index (DRI) for each drug for a given effect (Fa). DRI of �1, 1, and �1 indicate a
favorable dose reduction, no dose reduction, and a negative dose reduction, respectively. Values larger than 5 are
not represented in the plot. (D) Combination index (CI) values as a function of the effect levels (Fa), where CI values
of �1, 1, and �1 indicate synergism, an additive effect, and antagonism, respectively. Panels B to D were obtained
by analysis with CompuSyn software. The procedures are detailed in Materials and Methods.
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Effective extinction of high-fitness hepatitis C virus by favipiravir-ribavirin
combinations. Two hundred serial passages of HCV p0 in Huh-7.5 cells resulted in
population HCV p200, which displayed a 2- to 3-fold increase in replicative fitness, as
calculated from progeny production in single and serial infections, as well as from
growth competition experiments (72, 73). The high-fitness intermediate-passage HCV
p100 and HCV p200 displayed a lower sensitivity to the anti-HCV agents than their
parental virus, HCV p0, including to favipiravir and ribavirin (72, 74, 75), thus providing
HCV populations for a stringent evaluation of synergistic activities. The infectious
progeny production upon single infections of Huh-7.5 cells by HCV p0, HCV p100, and
HCV p200 was 10- to 100-fold lower with favipiravir-ribavirin combinations than with
the individual analogues (Fig. 2A and B). In serial infections in the presence of the drugs,
HCV p100 and HCV p200 displayed sustained resistance to favipiravir (at a concentra-
tion 54.0-fold its IC50 value for HCV p0) and ribavirin (at a concentration 11.9-fold its IC50

value for HCV p0); in contrast, the analogue combination extinguished all HCV popu-
lations in one to two passages independently of their fitness (Fig. 2C). To ascertain that
the decrease in viral replication correlates with the extinction of the HCV p0, HCV p100,
and HCV p200 populations, we performed three blind passages in the absence of any
drug starting at passage 10 for HCV p0 (with favipiravir, ribavirin, and the combination)
and at passage 10 for HCV p100 and HCV p200 (with the combination). In all cases, at
blind passage 3, no infectivity and no extracellular or intracellular viral RNA (using a
highly sensitive reverse transcription-PCR [RT-PCR] protocol) was detected (data not
shown). Thus, favipiravir-ribavirin combinations are effective in extinguishing low- and
high-fitness HCV populations.

Mutation site preferences. NS5B RNA from several HCV p0, HCV p100, and HCV
p200 populations passaged in the absence or presence of favipiravir or ribavirin was
analyzed by Illumina MiSeq deep sequencing, and for each mutant spectrum, the
nucleotide types present at the 5= and 3= end sides of the mutation sites were
compared using as a reference the consensus sequence of the corresponding popula-
tion. Read cleaning and data processing were as previously described (76, 77). The
incidence-based context at the 5= side and the 3= side of each mutated position was

TABLE 1 Parameters obtained with the software CompuSyn to describe the synergistic
effect of favipiravir and ribavirina

Ribavirin � favipiravir
doseb Effect (Fa)c

Dosed (�M) DRIe

CIfRibavirin Favipiravir Ribavirin Favipiravir

5 � 5 0.5101 12.4563 14.4863 2.49126 2.89727 0.74656
5 � 20 0.7059 22.0253 54.2846 4.40506 2.71423 0.59544
5 � 50 0.6935 21.1558 49.4461 4.23115 0.98892 1.24755
5 � 400 0.9338 73.7638 893.946 14.7528 2.23486 0.51524
10 � 5 0.7065 22.0688 54.5335 2.20688 10.9067 0.54481
10 � 20 0.7109 22.3922 56.4033 2.23922 2.82017 0.80117
10 � 50 0.8441 38.3742 196.573 3.83742 3.93147 0.51495
10 � 400 0.9547 97.0170 1687.07 9.70170 4.21768 0.34017
20 � 5 0.8421 37.9802 191.928 1.89901 38.3856 0.55264
20 � 20 0.8785 46.7487 310.618 2.33743 15.5309 0.49221
20 � 50 0.8751 45.7551 295.531 2.28776 5.91061 0.60630
20 � 400 0.9952 461.821 62,762.4 23.0911 156.906 0.04968
50 � 5 0.9494 89.6197 1,403.78 1.79239 280.757 0.56147
50 � 20 0.9650 116.543 2,580.56 2.33086 129.028 0.43678
50 � 50 0.9804 174.998 6,620.73 3.49996 132.415 0.29327
50 � 400 0.9968 609.716 119,493.0 12.1943 298.733 0.08535
aThe viral populations analyzed are described in Fig. 3.
bDose (concentration) of drug (in micromolar).
cFa, the fraction of the population that is affected by the dose.
dThe dose of a single drug that exhibits a given percent inhibition.
eDRI, dose reduction index, calculated by the equation of Chou: DRI � Dx/D, where Dx is the dose of a single
drug that exhibits a given percent inhibition, and D is the dose (69).

fCI, combination index, which is calculated with the formula CI � D1/Dx1 � D2/Dx2, where D1 and D2 are the
doses of ribavirin and favipiravir, respectively, and Dx1 and Dx2 are the doses of ribavirin and favipiravir that
exhibit a given percent inhibition, respectively.
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subjected to two statistical evaluations. The data are based on eight HCV populations
passaged in the absence of drug, five populations passaged in the presence of
favipiravir, and five populations passaged in the presence of ribavirin (Fig. 3A). For each
sample (population), the different haplotypes were aligned without considering the
haplotype abundance or the number of haplotypes in which a given mutation was

FIG 2 Extinction of high-fitness hepatitis C virus by combinations of favipiravir and ribavirin. (A, B) Viral
titers obtained after a single infection of HCV p0, HCV p100, or HCV p200 (the virus is indicated at the
top) in the absence or presence of the drug concentrations given on the abscissae (Mock, mock infected;
RIB, ribavirin; FPV, favipiravir). In each panel, �RIB and �FPV mean that the concentrations used in the
combination were the same concentrations of the drugs used individually. Titrations were carried out in
triplicate, and the statistical significance of the differences was determined by ANOVA. *, P � 0.05; **,
P � 0.01; ***, P � 0.001; ns, not significant. (C) The response of HCV p0, HCV p100, and HCV p200
subjected to 10 serial infections in the absence or the presence of the drug concentrations indicated in
the key. The statistical significance of the differences was determined by two-way ANOVA. ***, P � 0.001;
ns, not significant. The origins of the viruses and further experimental details are described in Materials
and Methods.
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present. Then, using all alignments for populations passaged under the same condi-
tions (either in the absence of drug or in the presence of favipiravir or ribavirin), the
distribution of nucleotides adjacent to each mutation site was determined.

Fisher’s test was used to test the null hypothesis of the independence of the
presence of drug on the residues that flanked each mutation site (see Table S1 posted

FIG 3 Influence of the immediate neighbors of each mutated site on mutant frequency. (A) Scheme of HCV
passages in the absence (No drug) and the presence of favipiravir or ribavirin. Inclined arrows indicate the viral
population analyzed by MiSeq Illumina deep sequencing of three amplicons of the NS5B-coding region. (B)
Effect of the nucleotide type present at the 5= and 3= sides of the mutated residue. The mutation types are
given on the abscissa, and the number of times that a given neighbor is present is given on the ordinate (the
color code for the nucleotide is in the box at the top). Statistical significances (determined by the proportion
test) are given below each panel group, with boxes linking the relevant comparisons. **, P � 0.01; ***,
P � 0.001. Deep sequencing, data processing, and statistical procedures are described in Materials and
Methods. (C) Summary of statistically significant preferred neighbor nucleotides for mutation sites.
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at http://babia.cbm.uam.es/~lab121/SupplMatGallego2). Regarding the nucleotide dis-
tribution at the 5= side of any mutation type, no significant difference was observed in
the comparison between the absence of drug and the presence of either favipiravir
(P � 0.384) or ribavirin (P � 0.105). The corresponding P values by Fisher’s test for the
nucleotide frequencies at the 3= side of any mutation site were 0.391 and 0.516. No
significant difference was noted either for the 5=- and 3=-side position in a direct
comparison between samples passaged in the presence of favipiravir and ribavirin
(P � 0.0712 and 0.137, respectively) (see Table S1 posted at http://babia.cbm.uam.es/
~lab121/SupplMatGallego2).

When only transition mutations were considered, some significant differences
were found. Specifically, the nucleotide type distribution at the 5= side of the G ¡
A transitions evoked by favipiravir differed from that evoked by ribavirin (P � 0.00362) (see
Table S2 posted at http://babia.cbm.uam.es/~lab121/SupplMatGallego2). A difference was
also quantified for the nucleotide distributions at the 3= side of the C ¡ U transitions
generated by the two analogues (P � 7.96 � 10�5) (see Table S2 posted at http://babia
.cbm.uam.es/~lab121/SupplMatGallego2) and also in the comparison between popula-
tions passaged in the absence of drug and the presence of favipiravir (P � 5.72 � 10�4) (see
Table S3 posted at http://babia.cbm.uam.es/~lab121/SupplMatGallego2). A neighbor residue
bias was not observed for any other transition type or any transversion (see Tables S2,
S3, and S4 posted at http://babia.cbm.uam.es/~lab121/SupplMatGallego2), although
the overall frequency of transitions was 6.24-fold higher than that of transversions,
weakening the detection of possible differences in the distribution of transversion
mutations.

Once the differences in the residues adjacent to mutation sites had been identified,
the responsible nucleotide types were determined using the proportion test, with P
value correction being performed using Bonferroni’s test (Fig. 3 and Table 2). For the

TABLE 2 Statistical analysis of the difference between the nucleotides present on the 5= or 3= side of the indicated mutation type in HCV
populations passaged in the absence and presence of favipiravir and ribavirina

Mutation
type

Side of immediate
neighbors Nucleotideb Comparison No.c

P value

Significanced

Proportion
test

Bonferroni
correction

G ¡ A 5= A Favipiravir 95 0.00054 0.00216 **
Ribavirin 55

C Favipiravir 28 0.02530 0.10100 NS
Ribavirin 42

G Favipiravir 37 0.29800 1.00000 NS
Ribavirin 42

U Favipiravir 14 0.38700 1.00000 NS
Ribavirin 18

C ¡ U 3= A Favipiravir 43 0.229000 0.917 NS
Ribavirin 57

C Favipiravir 58 0.260000 1.00000 NS
Ribavirin 73

G Favipiravir 34 0.015400 0.0614 NS
Ribavirin 58

U Favipiravir 96 0.000011 0.0000439 ***
Ribavirin 54

C ¡ U 3= A Favipiravir 43 0.013100 0.05250 NS
No drug 26

C Favipiravir 58 0.971000 1.00000 NS
No drug 19

G Favipiravir 34 0.083900 0.33500 NS
No drug 19

U Favipiravir 96 0.000509 0.00203 **
No drug 15

aThe viral populations analyzed are described in Fig. 3.
bThe nucleotide which is the 5= or 3= neighbor (indicated in the second column) of the mutation type given in the first column.
cNumber of times that the nucleotide is a neighbor to a mutation, without considering the haplotype abundance or the number of haplotypes in which a given
mutation was present.

dThe statistical significance of the differences is given as follows: NS, not significant; **, P � 0.01; ***, P � 0.001.
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comparison between favipiravir and ribavirin treatment, the proportion test indicated
that A and C are preferential at the 5= side of the G ¡ A transitions in the presence of
favipiravir, with only the preference for A reaching significance after P value correction.
Likewise, G and U were observed to be dominant at the 3= side of the C ¡ U transitions
evoked by favipiravir, with only the preference for U reaching significance after P value
correction. In the comparison between populations passaged in the absence of any
drug and the presence of favipiravir, U was significantly dominant at the 3= side of the
C ¡ U transitions. Thus, the results (Fig. 3 and Table 2) indicate that favipiravir and
ribavirin do not display an identical choice of mutation sites in the HCV NS5B-coding
region, and such a difference may contribute to their synergism.

DISCUSSION

Synergism permits a decrease in drug dosage and side effects while enhancing the
therapeutic effects, thereby reducing the probability of selection of drug-resistant
mutants (69). The search for synergistic antiviral combinations is particularly important
for highly variable viruses whose adaptability is guided by quasispecies dynamics (78).
Synergism is favored when the relevant drugs are directed to independent viral or
cellular targets or act by different mechanisms on the same target (69). In the case of
favipiravir and ribavirin, synergism may be prompted by two relevant differences that
distinguish the two drugs: (i) the multiple and nonidentical antiviral mechanisms
displayed by the two analogues and (ii) their different preferences for some mutation
sites, as revealed in the present study. Concerning the first difference, favipiravir may
act as a mutagenic agent and viral RNA chain terminator (63, 65); ribavirin may exert
immunomodulatory activities and cause the depletion of intracellular GTP, the inhibi-
tion of mRNA cap formation, or the inhibition of viral polymerases, in addition to lethal
mutagenesis (reviewed in references 64, 79, and 80). Concerning the second differ-
ence, the preference for different mutation sites, revealed by deep sequencing,
even if operative for only a subset of preferred mutation types, should confer an
advantage when the two mutagens act conjointly relative to the equivalent muta-
genic activity relying on only one of the compounds. We have no evidence that the
preferred mutation sites correspond to hot spots. The possibility that additional
differences in mutational preferences might be revealed with larger sample sizes of
the genome populations under comparison cannot be excluded. Additional spec-
trum analyses are necessary to further quantify mutation repertoire differences.
Given the multiple mechanistic differences between the two analogues, it is not
possible to evaluate the contribution of differences in mutation site preferences to
the synergistic action.

Our study has benefited from the availability of monophyletic (descendant from the
same initial genome) HCV populations that differ in fitness and the prior evidence that
fitness is a determinant of drug resistance in HCV (reviewed in reference 10). As a
significant comparison, combined doses of favipiravir and ribavirin at levels 54-fold and
11.9-fold their IC50 values, respectively, extinguished HCV p0 in one passage and HCV
p100 in two passages, while sofosbuvir used at a concentration 60-fold its IC50 value
required two passages to extinguish HCV p0 and six passages to extinguish HCV p100
under the same experimental conditions (compare the data in Fig. 2 with those in
reference 75). Since nucleotide analogues often differ in mutation preferences (10),
synergisms among this class of compounds are expected.

Synergistic interactions among drugs are particularly important when the ob-
jective is suppression of pathogen replication to prevent the selection of treatment-
resistant escape mutants. This is an objective for any pathogenic entity, be they
genetically variable and heterogeneous DNA and RNA viruses, protozoa, or cancer
cells (71, 81–83). A previous case of mutation type-driven antiviral reinforcement
involved APOBEC3G (A3G; a human deaminase naturally expressed in cells) and
5-azacytidine (5-AZC). A3G is mutagenic for HIV-1 and preferentially induces G ¡ A
mutations in plus-strand DNA through C deaminations in the minus-strand DNA
(84); in turn, 5-AZC is also mutagenic for HIV-1 but has a preference for G ¡ C
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transversions (85). Exposure of replicating HIV-1 to A3G and 5-AZC increased the
frequency of G ¡ A mutations relative to that with exposure to A3G alone, and this
enhancement was accompanied by an even stronger reduction in the number of
G ¡ C transversions induced by 5-AZC alone (86). In this case, the two mutagenic
activities potentiated the antiviral activity of each other by a range of 3- to 6-fold
over the concentration range tested.

The potential of synergistic lethal mutagenesis is reinforced by several proof-of-
principle experiments and clinical assays that have established the feasibility of the
lethal mutagenesis approach to treat viral infections in vivo (52, 57, 87–89). Synergistic
lethal mutagenesis offers the prospect of the broad-spectrum treatment of infections
caused by newly arising RNA viral pathogens and a rescue treatment for established
viral diseases when the circulation of inhibitor-resistant mutants acquires epidemio-
logical relevance.

MATERIALS AND METHODS
Cells, viruses, and infections. Huh-7.5 cells and Huh-7.5 reporter cells were grown in Dulbecco’s

modification of Eagle’s medium (DMEM) at 37°C in 5% CO2 as previously described (74, 90, 91). Huh-7.5
reporter cells were used for all infections in the absence and the presence of drugs, while Huh-7.5 cells
were used for titration of infectivity. Titration of HCV infectivity was performed by applying serial viral
dilutions of the sample to be tested on Huh-7.5 cells that had been seeded 16 h earlier on 96-well plates
at 6,400 cells/well. At 3 days postinfection, the monolayers were washed with phosphate-buffered saline
(PBS), fixed with cold methanol, and stained using anti-NS5A monoclonal antibody 9E10 (92). Virus titers
(expressed as the 50% tissue culture infective dose [TCID50] per milliliter) were calculated as previously
described (67, 74).

The viruses used were HCV p0, a preparation derived by transcription from plasmid Jc1FLAG2(p7-
nsGluc2A) (genotype 2a) (68) and then expanded into a working stock as previously described (67). HCV
p100 and HCV p200 are the populations that resulted from subjecting HCV p0 to 100 and 200 serial
passages in Huh-7.5 reporter cells, respectively (67, 73). Controls involving mock-infected cells and cells
infected with replication-defective mutant HCV GNN [GNNFLAG2(p7-nsGluc2A)] (68) were included as
previously described (67, 74).

For infections in the presence of favipiravir, ribavirin, or their combinations, the drugs were prepared
and used as detailed previously (74). In brief, filter-sterilized stocks of favipiravir (20 mM in water; Atomax
Chemicals Co. Ltd.) and of ribavirin (100 mM in PBS; Sigma) were stored at �70°C and diluted in DMEM
prior to use to reach the desired concentration. Huh-7.5 reporter cells (4 � 105) were pretreated with the
drugs (or DMEM without drug) for 16 h prior to infection, and then they were infected at a multiplicity
of infection (MOI) of 0.03 TCID50/cell with a virus adsorption time of 5 h. The infection was continued in
the absence or the presence of the drugs for 72 to 96 h. Serial passages in the absence or the presence
of the drugs were performed in parallel by infecting 4 � 105 Huh-7.5 reporter cells with the virus
contained in 0.5 ml of cell culture supernatant from the previous infection. This yielded a range of MOI
of from 4.6 � 10�5 to 6 TCID50/cell, and the value in each infection can be calculated from the data given
for each experiment. HCV was considered extinct when no infectivity or material amplifiable by RT-PCR
could be detected in the cell culture or upon blind passages in HuH-7.5 reporter cells in the absence of
any drug (53).

RNA extraction, cDNA amplification, and deep sequencing. Total extracellular or intracellular viral
RNA was extracted from infected or mock-infected cells using a QIAamp viral RNA kit and a Qiagen
RNeasy kit (Qiagen, Valencia, CA, USA), respectively, according to the manufacturer’s instructions. RT-PCR
amplification of HCV RNA for deep sequencing was performed using an AccuScript kit (Agilent Tech-
nologies) and primers specific for the NS5B-coding region (see Table S5 posted at http://babia.cbm.uam
.es/~lab121/SupplMatGallego2). The amplified DNA products were analyzed by agarose gel electropho-
resis with a Gene Ruler 1-kb Plus DNA ladder (Thermo Scientific) as a molar mass standard. For Illumina
deep sequencing, PCR products were purified (QIAquick gel extraction kit; Qiagen), quantified (Qubit
double-stranded DNA assay kit), and analyzed for quality (BioAnalyzer DNA 1000 LabChip) as previously
described (77). The three amplicons used for the deep sequencing analyses covered the following NS5B
genomic regions: A1, residues 7626 to 7962; A2, residues 7941 to 8257; and A3, residues 8229 to 8653.
Controls without template RNA were included in parallel to ascertain the absence of contamination by
template nucleic acids.

fastq data treatment. The fastq files obtained from MiSeq deep sequencing were subjected to a
data analysis pipeline (77, 93, 94) that was adapted to the Illumina MiSeq platform in a paired-end
2 � 300-bp mode. It involved the following main steps: (i) quality control evaluation, performed by
inspecting the profiles of per site quality, read length, and general instrument parameters of quality; (ii)
in paired-end experiments, determination of the overlap paired reads obtained with the FLASH tool (95),
with a minimum of 20 bp of overlap with a maximum of 10% mismatches; (iii) determination of the
quality profiles of the FLASH reads; (iv) demultiplexing of the reads by identifying the oligonucleotides
within windows of expected positions in the sequenced reads; (v) haplotype alignment in each fasta file
to the wild-type reference sequence or the master sequence in the file (the most abundant haplotype)
and quality filter, with exclusion from the analysis of haplotypes not covering the full amplicon or with
two indeterminations, three gaps, or differences of more than 30% with respect to the reference
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sequence; and (vi) the intersection of haplotypes in both strands with a minimum abundance of 0.1%,
excluding haplotypes unique to one strand. The minimum coverage was 40,000 reads per amplicon, with
the median coverage being 139,200 reads (interquartile range, 71,480 to 210,600 reads). The procedures
for read cleaning and to determine reliable mutant detection (set at 0.2%) and the origin of the pipeline
components were previously described (77, 96).

Computational and statistical analyses. Synergism between favipiravir and ribavirin was tested
using CompuSyn software (97, 98). To determine the statistical significance of differences in infectivity
levels, one-way and two-way analyses of variance (ANOVA) were carried out using Prism (version 6)
software (GraphPad). Fisher’s test was applied to detect differences in neighbor site-related mutational
preferences in mutant spectra. The proportion test was used to identify the nucleotide residues
responsible for the differences in mutational preferences. The Bonferroni correction was implemented for
multiple determinations.
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